Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30814279

RESUMO

Satellite tobacco necrosis virus 1 (STNV-1) is a model system for in vitro RNA encapsidation studies (N. Patel, E. C. Dykeman, R. H. A. Coutts, G. P. Lomonossoff, et al., Proc Natl Acad Sci U S A 112:2227-2232, 2015, https://doi.org/10.1073/pnas.1420812112; N. Patel, E. Wroblewski, G. Leonov, S. E. V. Phillips, et al., Proc Natl Acad Sci U S A 114:12255-12260, 2017, https://doi.org/10.1073/pnas.1706951114), leading to the identification of degenerate packaging signals (PSs) proposed to be involved in the recognition of its genome by the capsid protein (CP). The aim of the present work was to investigate whether these putative PSs can confer selective packaging of STNV-1 RNA in vivo and to assess the prospects of using decoy RNAs in antiviral therapy. We have developed an in planta packaging assay based on the transient expression of STNV-1 CP and have assessed the ability of the resulting virus-like particles (VLPs) to encapsidate mutant STNV-1 RNAs expected to have different encapsidation potential based on in vitro studies. The results revealed that >90% of the encapsidated RNAs are host derived, although there is some selectivity of packaging for STNV-1 RNA and certain host RNAs. Comparison of the packaging efficiencies of mutant STNV-1 RNAs showed that they are encapsidated mainly according to their abundance within the cells, rather than the presence or absence of the putative PSs previously identified from in vitro studies. In contrast, subsequent infection experiments demonstrated that host RNAs represent only <1% of virion content. Although selective encapsidation of certain host RNAs was noted, no direct correlation could be made between this preference and the presence of potential PSs in the host RNA sequences. Overall, the data illustrate that the differences in RNA packaging efficiency identified through in vitro studies are insufficient to explain the specific packaging of STNV-1 RNA.IMPORTANCE Viruses preferentially encapsidate their own genomic RNA, sometimes as a result of the presence of clearly defined packaging signals (PSs) in their genome sequence. Recently, a novel form of short degenerate PSs has been proposed (N. Patel, E. C. Dykeman, R. H. A. Coutts, G. P. Lomonossoff, et al., Proc Natl Acad Sci U S A 112:2227-2232, 2015, https://doi.org/10.1073/pnas.1420812112; N. Patel, E. Wroblewski, G. Leonov, S. E. V. Phillips, et al., Proc Natl Acad Sci U S A 114:12255-12260, 2017, https://doi.org/10.1073/pnas.1706951114) using satellite tobacco necrosis virus 1 (STNV-1) as a model system for in vitro studies. It has been suggested that competing with these putative PSs may constitute a novel therapeutic approach against pathogenic single-stranded RNA viruses. Our work demonstrates that the previously identified PSs have no discernible significance for the selective packaging of STNV-1 in vivo in the presence and absence of competition or replication: viral sequences are encapsidated mostly on the basis of their abundance within the cell, while encapsidation of host RNAs also occurs. Nevertheless, the putative PSs identified in STNV-1 RNA may still have applications in bionanotechnology, such as the in vitro selective packaging of RNA molecules.


Assuntos
Regiões 5' não Traduzidas , Genoma Viral , Mutação , RNA Viral , Vírus Satélite da Necrose do Tabaco , Montagem de Vírus , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia , Vírus Satélite da Necrose do Tabaco/química , Vírus Satélite da Necrose do Tabaco/genética , Vírus Satélite da Necrose do Tabaco/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(46): 12255-12260, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087310

RESUMO

Satellite tobacco necrosis virus (STNV) is one of the smallest viruses known. Its genome encodes only its coat protein (CP) subunit, relying on the polymerase of its helper virus TNV for replication. The genome has been shown to contain a cryptic set of dispersed assembly signals in the form of stem-loops that each present a minimal CP-binding motif AXXA in the loops. The genomic fragment encompassing nucleotides 1-127 is predicted to contain five such packaging signals (PSs). We have used mutagenesis to determine the critical assembly features in this region. These include the CP-binding motif, the relative placement of PS stem-loops, their number, and their folding propensity. CP binding has an electrostatic contribution, but assembly nucleation is dominated by the recognition of the folded PSs in the RNA fragment. Mutation to remove all AXXA motifs in PSs throughout the genome yields an RNA that is unable to assemble efficiently. In contrast, when a synthetic 127-nt fragment encompassing improved PSs is swapped onto the RNA otherwise lacking CP recognition motifs, assembly is partially restored, although the virus-like particles created are incomplete, implying that PSs outside this region are required for correct assembly. Swapping this improved region into the wild-type STNV1 sequence results in a better assembly substrate than the viral RNA, producing complete capsids and outcompeting the wild-type genome in head-to-head competition. These data confirm details of the PS-mediated assembly mechanism for STNV and identify an efficient approach for production of stable virus-like particles encapsidating nonnative RNAs or other cargoes.


Assuntos
Proteínas do Capsídeo/química , Engenharia Genética , Genoma Viral , RNA Viral/química , Vírus Satélite da Necrose do Tabaco/genética , Montagem de Vírus , Motivos de Aminoácidos , Sítios de Ligação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Expressão Gênica , Tamanho do Genoma , Sequências Repetidas Invertidas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , RNA Viral/genética , RNA Viral/metabolismo , Vírus Satélite da Necrose do Tabaco/metabolismo , Vírus Satélite da Necrose do Tabaco/ultraestrutura , Replicação Viral
3.
RNA Biol ; 10(4): 481-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23422316

RESUMO

Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Levivirus/química , Dobramento de RNA/genética , RNA Viral/química , Espectrometria de Fluorescência/métodos , Vírus Satélite da Necrose do Tabaco/química , Montagem de Vírus/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Cátions/química , Cátions/metabolismo , Genoma Viral , Levivirus/genética , Levivirus/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica/genética , Dobramento de RNA/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Vírus Satélite da Necrose do Tabaco/genética , Vírus Satélite da Necrose do Tabaco/metabolismo , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/fisiologia
4.
J Mol Biol ; 425(6): 1050-64, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23318955

RESUMO

We have examined the roles of RNA-coat protein (CP) interactions in the assembly of satellite tobacco necrosis virus (STNV). The viral genomic RNA encodes only the CP, which comprises a ß-barrel domain connected to a positively charged N-terminal extension. In the previous crystal structures of this system, the first 11 residues of the protein are disordered. Using variants of an RNA aptamer sequence isolated against the CP, B3, we have studied the sequence specificity of RNA-induced assembly. B3 consists of a stem-loop presenting the tetra-loop sequence ACAA. There is a clear preference for RNAs encompassing this loop sequence, as measured by the yield of T=1 capsids, which is indifferent to sequences within the stem. The B3-containing virus-like particle has been crystallised and its structure was determined to 2.3Å. A lower-resolution map encompassing density for the RNA has also been calculated. The presence of B3 results in increased ordering of the N-terminal helices located at the particle 3-fold axes, which extend by roughly one and a half turns to encompass residues 8-11, including R8 and K9. Under assembly conditions, STNV CP in the absence of RNA is monomeric and does not self-assemble. These facts suggest that a plausible model for assembly initiation is the specific RNA-induced stabilisation of a trimeric capsomere. The basic nature of the helical extension suggests that electrostatic repulsion between CPs prevents assembly in the absence of RNA and that this barrier is overcome by correct placement of appropriately orientated helical RNA stems. Such a mechanism would be consistent with the data shown here for assembly with longer RNA fragments, including an STNV genome. The results are discussed in light of a first stage of assembly involving compaction of the genomic RNA driven by multiple RNA packaging signal-CP interactions.


Assuntos
Proteínas do Capsídeo/química , RNA Viral/química , Vírus Satélite da Necrose do Tabaco/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Genoma Viral , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Viral/metabolismo
5.
Acta Biomater ; 5(3): 893-902, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19010745

RESUMO

This paper examines the interaction between a block copolymer and a virus. A poly(styrene-b-4-vinylpyridine) block copolymer was loaded with nickel, and cast from a selective solvent mixture to form a cylindrical microstructure (PS/P4VP-Ni). The nickel ions were confined within the P4VP block of the copolymer. The binding of tobacco mosaic virus (TMV) and tobacco necrosis virus on microphase-separated PS/P4VP-Ni was examined. A staining technique was developed to simultaneously visualize virus and block copolymer structure by transmission electron microscopy. Electron microscopy revealed virus particles associated with block copolymer microphase-separated domains, even after extensive washes with Tween. In contrast, virus associated with PS/P4VP block copolymers lacking Ni were readily removed by Tween. The cylinder long axis of the microstructure was oriented using a hot press and a cooled channel die for quenching, resulting in PS/P4VP cylinders that had a strong anisotropic directional preference. When exposed to flowing solutions of TMV, the PS/P4VP-Ni surface exhibited an ability to retain TMV in a partially aligned state, when the direction of flow coincided with the long axis of the PS/P4VP-Ni cylinders. These results suggest that Coulombic interactions provide a robust means for the binding of virus particles to block copolymer surfaces.


Assuntos
Nanoestruturas/química , Polímeros/química , Polivinil/química , Vírus do Mosaico do Tabaco/metabolismo , Vírus Satélite da Necrose do Tabaco/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotecnologia , Níquel/química , Polissorbatos/química , Propriedades de Superfície , Vírus do Mosaico do Tabaco/ultraestrutura , Vírus Satélite da Necrose do Tabaco/ultraestrutura , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...